什么是光學折射系統(tǒng)?光學折射系統(tǒng)原理分析
光學折射系統(tǒng)是一種利用透鏡或反射鏡的折射和反射原理來操縱光線的光學裝置。這類系統(tǒng)通過改變光線的傳播方向和聚焦特性,實現(xiàn)對光束的控制和成像。伽利略望遠鏡作為一種典型的光學折射系統(tǒng),其結構由一個正透鏡(物鏡)和一個負透鏡(目鏡)組成,能夠實現(xiàn)對遠處物體的放大觀察。
伽利略望遠鏡的工作原理基于透鏡的光焦度(φ),即透鏡對光線的折射能力。系統(tǒng)的光學方程式可表示為:
φL1+φL2–φL1φL2D=0
其中φL1—透鏡1(正透鏡)的光焦度,φL2—透鏡2(負透鏡)的光焦度,D—鏡片間隔。如果從負透鏡射出的光線在工作溫度范圍內保持準直,其被認為是被動無熱化的設計。在一些要求更高的應用中,可以指定在溫度范圍內放大倍率變化量作為條件進行進一步約束。
望遠鏡中透鏡光學材料和鏡筒的CTE和TCR如下表所示。在本例中,準直的近軸變化需要控制在18μrad以內(在衍射極限范圍內,四分之一波長),–10°C和50°C下的像差曲線如下圖。
本例選擇的外殼材料是殷鋼,與鋁或其他金屬相比,這種材料具有非常低的膨脹系數(shù)。正物鏡為球面透鏡,由硅制成,具有較小的膨脹系數(shù)和中等大的正折射熱系數(shù),隨著溫度的升高,鏡頭會變得更加正;負鍺透鏡具有較小的膨脹系數(shù)和較大的正折射熱系數(shù),隨著溫度的升高,負透鏡變得更加負。因此,當兩者按配合使用并安裝在殷鋼的鏡筒中時,它們的尺寸和材料變化會相互抵消,從而使出射光束保持準直狀態(tài)。此外,放大倍率的變化僅為0.3%左右。
通過選擇與制造光學零件(反射鏡)材料相同的鏡筒材料,選擇光學零件特性來補償鏡筒材料的熱效應,以及選擇鏡筒材料來補償光學零件的光學特性,可以實現(xiàn)光學設備的被動無熱化。
▍最新資訊
-
MIT突破光電芯片封裝技術難題:引領下一代計算與通信產業(yè)變革
在全球數(shù)據(jù)流量呈指數(shù)級增長的背景下,如何實現(xiàn)光子芯片與電子芯片在單一封裝內的高效集成,已成為制約下一代計算與通信技術規(guī)?;l(fā)展的核心議題。麻省理工學院(MIT)材料科學與工程系ThomasLord講席教授、微光子學中心主任LionelKimerling指出:“在單一封裝內達成光子學與電子學的集成,其戰(zhàn)略意義堪比21世紀的‘晶體管’技術。若無法攻克這一核心挑戰(zhàn),該領域的大規(guī)模產業(yè)化進程將無從推進?!睘閼獙Υ颂魬?zhàn),MIT新組建了由美國國家科學基金會資助的FUTUR-IC研究團隊,項目負責人、MIT材料研究實驗室首席研究科學家AnuAgarwal明確表示:“團隊的核心目標是構建資源高效的微芯片產業(yè)價值鏈,為行業(yè)發(fā)展提供底層技術支撐?!?/p>
2025-08-29
-
超精密光學鏡片的關鍵制備環(huán)節(jié):精密光學鍍膜技術的核心價值與應用分析
在超精密光學鏡片的全生命周期制造流程中,材料篩選構建基礎性能、精密加工保障幾何精度、專業(yè)測試驗證產品質量,而光學鍍膜作為最終工序,堪稱實現(xiàn)鏡片性能躍升的“關鍵一躍”。該工序并非簡單的表面覆蓋處理,而是通過在原子尺度上精準調控膜層厚度、材料組成及微觀結構,使加工完成的基片滿足最終光學系統(tǒng)對超高透射率、超高反射率、特定分光比及極端環(huán)境穩(wěn)定性等核心指標的要求。當前,超精密光學鍍膜技術已形成多技術路徑并行發(fā)展的格局,各技術體系在性能、成本及應用場景上各具特色,共同支撐航空航天、量子科技、高端制造等領域的技術突破。
2025-08-29
-
什么是水復合激光加工技術?高端制造領域熱損傷難題的創(chuàng)新解決方案
水復合激光加工技術以水為核心輔助介質,通過“冷卻-沖刷-導光”的多機制協(xié)同作用,構建了三類差異化技術體系,為精密制造領域提供了覆蓋“經濟實用”至“高精度高效能”的全場景技術方案,對推動高端制造業(yè)高質量發(fā)展具有重要意義。
2025-08-29
-
水導激光加工碳化硅高深徑比微孔的技術研究與工藝優(yōu)化
碳化硅作為一種具備高硬度、高耐磨性及優(yōu)異熱學、電學性能的先進材料,在航空航天、半導體器件、新能源裝備等高端制造領域應用前景廣闊。然而,其硬脆特性使得高深徑比微孔(深徑比≥10:1)加工面臨嚴峻挑戰(zhàn),傳統(tǒng)加工工藝如機械鉆孔、電火花加工、超聲加工等,普遍存在刀具磨損嚴重、加工精度低、表面質量差或加工效率不足等問題,難以滿足高端領域對碳化硅微孔構件的嚴苛要求。在此背景下,水導激光加工技術融合激光高能量密度與水射流冷卻排屑的雙重優(yōu)勢,為突破碳化硅微孔加工瓶頸提供了創(chuàng)新技術路徑,相關工藝參數(shù)的優(yōu)化研究對推動該技術產業(yè)化應用具有重要意義。
2025-08-28