TriAngle自準(zhǔn)直儀的工作原理及其在測量楔形件角度中的應(yīng)用
在現(xiàn)代精密光學(xué)測量領(lǐng)域,TriAngle自準(zhǔn)直儀作為一種高效、精確的測量工具,廣泛應(yīng)用于光學(xué)元件的角度測量。本文將詳細(xì)介紹TriAngle自準(zhǔn)直儀的工作原理及其在測量楔形件角度中的應(yīng)用。
TriAngle自準(zhǔn)直儀的核心功能在于其能夠精確測量視野范圍內(nèi)至指定值的楔形件。以焦距為300毫米的設(shè)備為例,它可以測量高達(dá)2000弧秒的楔形件。這種高精度的測量能力使得TriAngle在光學(xué)制造和檢測領(lǐng)域中不可或缺。
測量光學(xué)元件的角度通常采用兩種方法:反射法和透射法。反射法通過分析從楔形件兩個(gè)表面反射的光線位置差異來計(jì)算楔形角。具體操作時(shí),將楔形件放置在自準(zhǔn)直儀前,確保兩個(gè)反射光都能落在相機(jī)芯片上,然后切換到楔形測量模式即可獲得測量結(jié)果。
透射法則需要在自準(zhǔn)直儀前放置一面鏡子,并將該位置歸零。這種方法通過光線從一側(cè)穿過楔形件,經(jīng)過鏡子反射回來,再次穿過楔形件的方式來測量楔形角。為了確保測量的準(zhǔn)確性,必須精確知道鏡子相對(duì)于自準(zhǔn)直儀的位置。在實(shí)際操作中,首先移除楔形件,切換到透射測量模式,并將位置歸零,然后將楔形件放置在鏡子和自準(zhǔn)直儀之間,以獲得正確的光束偏差。
TriAngle自準(zhǔn)直儀的這兩種測量模式各有優(yōu)勢。反射模式適用于測量大角度楔形件,而透射模式則更適用于測量小角度楔形件。這種靈活性使得TriAngle能夠適應(yīng)不同尺寸和類型的光學(xué)元件測量需求。
TriAngle自準(zhǔn)直儀通過其精確的反射法和透射法,為光學(xué)元件的角度測量提供了高效且可靠的解決方案。無論是在光學(xué)制造過程中的質(zhì)量控制,還是在科研領(lǐng)域的精確測量,TriAngle都展現(xiàn)了其卓越的性能和廣泛的應(yīng)用潛力。隨著技術(shù)的不斷進(jìn)步,TriAngle自準(zhǔn)直儀將繼續(xù)在精密光學(xué)測量領(lǐng)域發(fā)揮其重要作用。
▍最新資訊
-
MIT突破光電芯片封裝技術(shù)難題:引領(lǐng)下一代計(jì)算與通信產(chǎn)業(yè)變革
在全球數(shù)據(jù)流量呈指數(shù)級(jí)增長的背景下,如何實(shí)現(xiàn)光子芯片與電子芯片在單一封裝內(nèi)的高效集成,已成為制約下一代計(jì)算與通信技術(shù)規(guī)?;l(fā)展的核心議題。麻省理工學(xué)院(MIT)材料科學(xué)與工程系ThomasLord講席教授、微光子學(xué)中心主任LionelKimerling指出:“在單一封裝內(nèi)達(dá)成光子學(xué)與電子學(xué)的集成,其戰(zhàn)略意義堪比21世紀(jì)的‘晶體管’技術(shù)。若無法攻克這一核心挑戰(zhàn),該領(lǐng)域的大規(guī)模產(chǎn)業(yè)化進(jìn)程將無從推進(jìn)?!睘閼?yīng)對(duì)此挑戰(zhàn),MIT新組建了由美國國家科學(xué)基金會(huì)資助的FUTUR-IC研究團(tuán)隊(duì),項(xiàng)目負(fù)責(zé)人、MIT材料研究實(shí)驗(yàn)室首席研究科學(xué)家AnuAgarwal明確表示:“團(tuán)隊(duì)的核心目標(biāo)是構(gòu)建資源高效的微芯片產(chǎn)業(yè)價(jià)值鏈,為行業(yè)發(fā)展提供底層技術(shù)支撐?!?/p>
2025-08-29
-
超精密光學(xué)鏡片的關(guān)鍵制備環(huán)節(jié):精密光學(xué)鍍膜技術(shù)的核心價(jià)值與應(yīng)用分析
在超精密光學(xué)鏡片的全生命周期制造流程中,材料篩選構(gòu)建基礎(chǔ)性能、精密加工保障幾何精度、專業(yè)測試驗(yàn)證產(chǎn)品質(zhì)量,而光學(xué)鍍膜作為最終工序,堪稱實(shí)現(xiàn)鏡片性能躍升的“關(guān)鍵一躍”。該工序并非簡單的表面覆蓋處理,而是通過在原子尺度上精準(zhǔn)調(diào)控膜層厚度、材料組成及微觀結(jié)構(gòu),使加工完成的基片滿足最終光學(xué)系統(tǒng)對(duì)超高透射率、超高反射率、特定分光比及極端環(huán)境穩(wěn)定性等核心指標(biāo)的要求。當(dāng)前,超精密光學(xué)鍍膜技術(shù)已形成多技術(shù)路徑并行發(fā)展的格局,各技術(shù)體系在性能、成本及應(yīng)用場景上各具特色,共同支撐航空航天、量子科技、高端制造等領(lǐng)域的技術(shù)突破。
2025-08-29
-
什么是水復(fù)合激光加工技術(shù)?高端制造領(lǐng)域熱損傷難題的創(chuàng)新解決方案
水復(fù)合激光加工技術(shù)以水為核心輔助介質(zhì),通過“冷卻-沖刷-導(dǎo)光”的多機(jī)制協(xié)同作用,構(gòu)建了三類差異化技術(shù)體系,為精密制造領(lǐng)域提供了覆蓋“經(jīng)濟(jì)實(shí)用”至“高精度高效能”的全場景技術(shù)方案,對(duì)推動(dòng)高端制造業(yè)高質(zhì)量發(fā)展具有重要意義。
2025-08-29
-
水導(dǎo)激光加工碳化硅高深徑比微孔的技術(shù)研究與工藝優(yōu)化
碳化硅作為一種具備高硬度、高耐磨性及優(yōu)異熱學(xué)、電學(xué)性能的先進(jìn)材料,在航空航天、半導(dǎo)體器件、新能源裝備等高端制造領(lǐng)域應(yīng)用前景廣闊。然而,其硬脆特性使得高深徑比微孔(深徑比≥10:1)加工面臨嚴(yán)峻挑戰(zhàn),傳統(tǒng)加工工藝如機(jī)械鉆孔、電火花加工、超聲加工等,普遍存在刀具磨損嚴(yán)重、加工精度低、表面質(zhì)量差或加工效率不足等問題,難以滿足高端領(lǐng)域?qū)μ蓟栉⒖讟?gòu)件的嚴(yán)苛要求。在此背景下,水導(dǎo)激光加工技術(shù)融合激光高能量密度與水射流冷卻排屑的雙重優(yōu)勢,為突破碳化硅微孔加工瓶頸提供了創(chuàng)新技術(shù)路徑,相關(guān)工藝參數(shù)的優(yōu)化研究對(duì)推動(dòng)該技術(shù)產(chǎn)業(yè)化應(yīng)用具有重要意義。
2025-08-28